Level 4
 PROMPT sheet

4/1 Number Patterns

- A list of numbers with a pattern is called a SEQUENCE
- The numbers are called TERMS
- A 'TERM TO TERM RULE' tells you how to get from one term to the next
It might be add, subtract, multiply or divide by something

This is a sequence:

4/2 Multiples, factors \& square numbers

- FACTORS are what divides exactly into a number
e.g. Factors of 12 are:

1	12
2	6
3	4

- MULTIPLES are the times table answers
e.g. Multiples of 5 are:

$$
\begin{array}{lllll}
5 & 10 & 15 & 20 & 25
\end{array}
$$

- SQUARES are the result of multiplying a number by itself
e.g. $1 \times 1=1$
$2 \times 2=4$
Square numbers
$3 \times 3=9$

4/3 Multiply \& Divide by 10 or 100

- To multiply by 10 , move each digit one place to the left
e.g. $35.6 \times 10=356$

Hundreds	Tens	Units	\bullet	tenths
	3	5	\bullet	6
3	5^{\star}	6	\bullet	

- To divide by 10 , move each digit one place to the right
e.g. $35.6 \div 10=356=3.56$

Tens	Units	\bullet	tenths	hundredths
3	5	\bullet	6	
	3	5	6	

- To multiply by 100 , move each digit 2 places to the left
- To divide by 100 , move each digit 2 places to the right

4/3 Multiply \& Divide by 10 or 100 AN ALTERNATIVE METHOD Instead of moving the digits Move the decimal point the opposite way

4/4 Fraction, decimal, percentage equivalents

LEARN THESE:

$$
\begin{aligned}
& \frac{1}{4}=0.25=25 \% \\
& \frac{1}{2}=0.5=50 \% \\
& \frac{3}{4}=0.75=75 \%
\end{aligned}
$$

4/5 Convert mixed numbers to improper fractions \& vv

- An improper fraction is top heavy \& can be changed into a mixed number $\frac{3}{2}$ can be shown in a diagram

- A mixed number can be changed back into an improper fraction

$$
\begin{aligned}
& 1_{x^{+}}^{+\frac{1}{2}}=\frac{3}{2} \\
& 2_{x}^{+} \frac{3}{4}=\frac{11}{4}
\end{aligned}
$$

4/6 Simple ratio

The ratio of squares to triangles can be written squares: triangles

Ratios can be simplified just like fractions

4/7 Use inverse operations

- To undo ADD, just SUBTRACT
e.g. $36+23=59(59-36=23)$
- To undo MULTIPLY, just DIVIDE
e.g. $7 \times 3=21 \quad(21 \div 7=3)$
- Use balancing:
$20+$
 $=20 \times 4$
$20+$
 $=80$
$20+60=80 \quad(80-20=60)$

4/8 Brackets in calculations

A calculation must be done in the correct order

1. Brackets
2. Indices, Division and Multiplication
3. Addition and Subtraction

Using this order I get 3 different answers:

$$
\begin{gathered}
3+6 \times 5-1=32 \\
(3+6) \times 5-1=44 \\
3+6 \times(5-1)=27
\end{gathered}
$$

It all depends on where the bracket is

4/9 Times tables up to 10×10

It is important to know the times tables and the division facts that go with them

Example

$$
\begin{aligned}
& 9 \times 7=63 \\
& 63 \div 9=7 \\
& 63 \div 7=9
\end{aligned}
$$

4/14 Properties of 2D shapes

TRIANGLES - angles add up to 180°

Isosceles triangle

- 2 equal sides
- 2 equal angles
- 1 line of symmetry
- No rotational symmetry

Equilateral triangle

- 3 equal sides
- 3 equal angles -60°
- 3 lines of symmetry
- Rotational symmetry order 3

QUADRILATERALS - all angles add up to 360°

Square

- 4 equal sides
- 4 equal angles -90°
- 4 lines of symmetry
- Rotational symmetry order 4

Rectangle

- Opposite sides equal
- 4 equal angles - 90°
- 2 lines of symmetry
- Rotational symmetry order 2

Parallelogram

- Opposite sides parallel
- Opposite angles equal
- NO lines of symmetry
- Rotational symmetry order 2

Rhombus (like a diamond)

- Opposite sides parallel
- Opposite angles equal
- 2 lines of symmetry
- Rotational symmetry order 2

Trapezium

- ONE pair opposite sides parallel

Kite

- One pair of opposite angles equal
- 2 pairs of adjacent sides equal
- ONE line of symmetry
- No rotational symmetry

4/14 Properties of 3D shapes

PRISMS- same cross section through length

Cube and cuboid

- 6 faces
- 12 edges
- 8 vertices

Triangular prism

- 5 faces
- 9 edges
- 8 vertices

Cylinder - special prism

PYRAMIDS- a point opposite the base
Pyramid - square based

- 5 faces
- 8 edges
- 5 vertices

Pyramid - triangular based

- 4 faces
- 6 edges
- 4 vertices

Cone - special pyramid

4/15 Reflect in a mirror line

- To reflect a shape in a vertical line

- To reflect a shape in a 45° line

Distances from shape to mirror and mirror to reflection must be same

Tracing paper is useful:

1. Trace the shape \& the mirror line
2. Flip the tracing paper over the mirror line
3. Redraw the shape in its new position

4/16 Translate a shape

- Move horizontally 5 spaces right

			1	2	3	4	5

- Move vertically 4 spaces down

4/16 Rotate a shape

- To rotate a shape 180° about P

					P			

Tracing paper is useful:

1. Trace the shape
2. Hold the shape down with a pencil
3. Rotate tracing paper
4. Redraw the shape in its new position

4/17 Use a ruler accurately

Measure from 0
This line is 14.7 cm long

Use a protractor accurately

Count the number of degrees between the 2 arms of the angle. This angle is 127°

4/18 Find perimeter of simple shapes

- Perimeter is round the OUTSIDE Perimeter of this shape $=12 \mathrm{~cm}$

- Area is the number of squares INSIDE Area of this shape $=5 \mathrm{~cm}^{2}$

4/19 Record using a frequency table

Score on dice	Tally	Frequency
1	HII HII	10
2	IIII	4
3	HI I I	6
4	III	3
5	HI III	8
6	I	1

4/19 Record using a grouped frequency table

Weight(w)	Tally	Frequency
$15 \leq w<20$		
$20 \leq w<25$		
$25 \leq w<30$		
$30 \leq w<35$		
$35 \leq w<40$		

4/20 Use a Venn Diagram

- To place these numbers onto a Venn diagram
$\begin{array}{lllllll}4 & 8 & 12 & 16 & 20 & 24 & 28 \\ 32 & 36 & 40\end{array}$

Multiples of 4 Multiples of 8

- To place these numbers onto a Carroll diagram
$\begin{array}{lllllll}25 & 27 & 14 & 47 & 36 & 37 & 67 \\ & 64 & 16 & 9 & 11 & & \end{array}$

| | Square
 number | Not a
 square
 number | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

4/21 Construct/interpret graphs
 - Line graph - temperature

- Bar graph - Number of pupils at a youth club

Week 2

- Pie chart - Number of pupils in the yard

4/22 Mode and Range

- Mode is the most frequent measure
- Range is highest minus lowest measure

4/23 Language of probability

- Probability words are used to describe how likely it is that an event will happen.
Examples of probability words are
- certain
- likely
- even chance
- unlikely
- impossible

Other words:

- Equally likely - when all outcomes have the same chance of occurring
- Biased - when all outcomes do NOT have the same chance of occurring

